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Abstract
We consider the Hankel determinant representation for the rational solutions
of the Painlevé II equation. We give an explicit formula for the generating
function of the entries in terms of logarithmic derivative of the Airy function.
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1. Introduction

In this paper we introduce a generating function associated with the rational solutions of the
Painlevé II equation and characterize it explicitly in terms of the Airy function. Here the
Painlevé II equation (PII) is a second-order nonlinear ordinary differential equation with a
parameter α,

d2u

dz2
= 2u3 + zu + α. (1)

In dealing with rational solutions, it is more convenient to redefine the variables and parameter
as

u = (−4)−1/3v, z = (−4)1/3x, α �→ −α (2)

so that PII (1) is rescaled as

d2v

dx2
= 2v3 − 4xv + 4α. (3)

This equation has exactly one rational solution for α being an arbitrary integer [1] and has
no rational solution if α is not an integer [5, 8, 10]. It admits a Bäcklund transformation
(v, α) �→ (−v, −α), which clearly maps rational solutions to rational solutions. Moreover the
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unique rational solution for α = 0 is the trivial solution v ≡ 0. Hence α may be restricted to
positive integers without loss of generality.

According to [2], any rational solution admits two types of determinant representation;
one is the Jacobi–Trudi type and the other is the Hankel type, the latter being described as
follows. For each positive integer N + 1, the unique rational solution for α = N + 1 is given
by

v = d

dx
log

σN+1

σN

where σN is the Hankel determinant

σN =

∣∣∣∣∣∣∣∣∣

a0 a1 · · · aN−1

a1 a2 · · · aN

...
...

. . .
...

aN−1 aN · · · a2N−2

∣∣∣∣∣∣∣∣∣
with an = an(x) being polynomials defined by the recurrence relation

a0 = x, a1 = 1, an+1 = dan

dx
+

n−1∑
k=0

ak an−1−k. (4)

On the one hand, the determinant representation of the Jacobi–Trudi type implies that the
rational solutions can be described in terms of certain specializations of Schur polynomials [2].
What, on the other hand, does the determinant representation of the Hankel type mean? Or
more simply we may ask: what is the sequence an?

As will be seen in this paper, an answer to the above question is very intriguing! The
generating function for the sequence an is essentially the Airy function. More precisely we
have the following:

Theorem 1.1. Let θ(x, t) be an entire function of two variables defined by

θ(x, t) = exp
(
2t3/3

)
Ai(t2 − x) (5)

where Ai(z) is the Airy function. Then there exists an asymptotic expansion

∂

∂t
log θ(x, t) ∼

∞∑
n=0

an(x) (−2t)−n (6)

as t → ∞ in any proper subsector of the sector | arg t | < π/2.

The occurrence of the Airy function in theorem 1.1 is quite suggestive to those who know
that PII (3) has a particular solution

v = d

dx
log Ai

(
21/3x

)
, α = 1/2.

As is well known, PII (3) admits (exactly) two classes of classical solutions, namely, the class
of rational solutions and that of Airy function solutions [10]. Theorem 1.1 might then be
interpreted as asserting that all members of the former class are generated by a particular
member of the latter; see section 4 for further discussions.

2. Riccati Equation

We will obtain a differential equation satisfied by the generating function

F(x, t) =
∞∑

n=0

an(x) (−2t)−n, (7)
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which is thought of as a formal power series of t−1 with polynomial coefficients in x. To this
end we have to deduce some other recurrence relations for an from the original one (4) together
with the data on the first three terms

a0 = x, a1 = 1, a2 = x2. (8)

Lemma 2.1. The infinite sequence an satisfies recurrence relations

dan+1

dx
= 2nan−1, (9)

an+1 = 2(n − 1)an−2 +
n−1∑
k=0

ak an−k−1. (10)

Proof. Recurrence relation (9) was already mentioned in [2, equation (58)], but a proof is
included here for the sake of completeness. The proof proceeds by induction on n. Assume
that (9) holds for 1, . . . , n. Recurrence relation (4) and induction hypothesis lead to

an+2 = a′
n+1 +

n∑
k=0

ak an−k = 2nan−1 +
n∑

k=0

ak an−k.

Differentiating both sides and using the initial condition (8), induction hypothesis and the
recurrence relation (4), one finds

a′
n+2 = 2na′

n−1 + 2an +
n∑

k=2

a′
k an−k +

n−2∑
k=0

ak a′
n−k

= 2na′
n−1 + 2an +

n∑
k=2

2(k − 1) ak−2 an−k +
n−2∑
k=0

ak · 2(n − k − 1) an−k−2

= 2an + 2na′
n−1 +

n−2∑
k=0

2n ak an−k−2

= 2an + 2nan

= 2(n + 1) an.

Hence (9) holds for n + 1 and the induction is complete. Recurrence relation (10) is obtained
by substituting (9) into (4). �

Lemma 2.1 leads to a differential equation of the Riccati type.

Lemma 2.2. The generating function F(x, t) satisfies a differential equation

t
∂f

∂t
+ tf 2 − (

4t3 + 1
)
f + 4xt3 − 2t2 = 0. (11)

Proof. From (7) one has

tF 2 = t

∞∑
n=0

(
n∑

k=0

ak an−k

)
(−2t)−n

= tx2 + t

∞∑
n=1

(
n∑

k=0

ak an−k

)
(−2t)−n

= tx2 + t

∞∑
n=1

(an+2 − 2n an−1) (−2t)−n
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= tx2 + 4t3
∞∑

n=3

an (−2t)−n +
∞∑

n=0

(n + 1) an(−2t)−n

= tx2 + 4t3
{
F − x − (−2t)−1 − x2(−2t)−2

}
+

(
−t

∂

∂t
+ 1

)
F

= −t
∂F

∂t
+
(
4t3 + 1

)
F − 4xt3 + 2t2

where (8) was used in the second and fifth equalities and (10) in the third equality. Hence F

satisfies the differential equation (11). �

3. The Airy function

The Riccati equation (11) can be linearized in a standard manner.

Lemma 3.1. The change of dependent variable

f = ∂

∂t
log{u exp(2t3/3)} (12)

transforms the Riccati equation (11) into a linear equation

t
∂2u

∂t2
− ∂u

∂t
− 4(t5 − xt3)u = 0. (13)

Furthermore the change of independent variable

z = t2 − x (14)

simplifies (13) into the Airy differential equation

∂2u

∂z2
− zu = 0. (15)

The proof is shown simply by direct calculations.
It is well known [4, 11] that the Airy equation (15) has the formal solutions

U±(z) = 1

2
√

π
exp

(
±2z3/2

3

)
z−1/4

∞∑
n=0

(1/6)n(5/6)n

n!

(
±4z3/2

3

)−n

(16)

and that the Airy function Ai(z) admits an asymptotic representation

Ai(z) ∼ U−(z) (17)

as z → ∞ in any proper subsector of the sector | arg z| < π .

Lemma 3.2. Equation (13) admits a formal solution

U(x, t) = 1

2
√

π
exp

(
−2t3

3
+ xt

)
t−1/2 exp

{
1

2

∞∑
n=1

an+1(x)

n
(−2t)−n

}
. (18)

If the branch z1/2 = t (1 − xt−2)1/2 = t − (x/2)t−1 + · · · is taken for the square root of (14),
then

U(x, t) = U−(z). (19)
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Proof. Observe that u = U(x, t) defined by (18) satisfies equation (12) with f = F(x, t).
Since F(x, t) solves the Riccati equation (11), lemma 3.1 implies that (18) solves the linear
equation (13). Under the relation (14), U(x, t) must be either U+(z) or U−(z) since it is a
formal solution of the Airy equation (15). Comparing the exponential factors of (16) and (18),
we must choose the minus sign and hence have (19). �

Proof of theorem 1.1.. We are now in a position to establish theorem 1.1. By (17) and (19)
the function Ai(t2 − x) has an asymptotic representation U(x, t) as t → ∞ in any proper
subsector of the sector | arg t | < π/2 (note that under the relation (14) a sector of central angle
θ in the z plane corresponds to one of central angle θ/2 in the t plane). This fact, through the
transformation (12), leads to the asymptotic expansion (6). �

4. Concluding discussions

In this paper we have considered the infinite sequence of polynomials that appears in the Hankel
determinant representation for rational solutions of the Painlevé II equation. As a result we
have constructed a generating function explicitly represented in terms of the Airy function,
which by itself is a particular solution of the Painlevé II equation.

It is natural to ask whether there are similar phenomena for other Painlevé equations. It is
known that any other Painlevé equation, except for the first one PI, also admits two classes of
classical solutions, namely, the class of rational solutions and that of special function solutions;
Bessel for PIII, Hermite–Weber for PIV, Kummer for PV and Gauss for PVI [6–9]. It is also
known that all the rational solutions are represented in terms of Hankel determinants with
entries from an infinite sequence of certain special polynomials [3]. Now a natural question is
whether this infinite sequence has a generating function expressible in a closed form by using
the respective special functions. Moreover, how about generic (transcendental) solutions? Do
they admit similar phenomena? Further, how about the discrete cases? These points, together
with the mechanism behind these strange phenomena, are yet to be explored in the future.
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